
Com-plete Resource Usage and Estimates
This chapter gives an overview of how Com-plete uses the various system resources and shows how you
can estimate the amount used, based on Com-plete’s needs and other factors at your installation.
Depending on the type of resource, a shortage of that resource will under normal circumstances be
handled by Com-plete. In some cases, resource shortage does not affect the operation of Com-plete;
however, in others, it can mean that certain functions cannot be performed until sufficient storage
becomes available. This is discussed in more detail at the start of each section.

Note:
The storage estimates given in this chapter refer to the base level of Com-plete 5.1. Future maintenance
may cause these estimates to change. Please refer to the relevant documentation updates issued with each
maintenance level.

This chapter covers the following topics:

Virtual and Real Storage

The Roll Subsystem

The Com-plete Spool Data Set

The Com-plete Sequential/Direct Data Set

The UDEBUG Buffer Pool

Virtual and Real Storage
A number of mechanisms exist in Com-plete for managing storage. Each is described here, together with
the various uses they are put to. This will give you an idea of how to utilize your available storage better
and help you understand some of the performance issues and integrity problems associated with the
storage management under Com-plete.

Real Storage

It is possible for Com-plete to be swappable. This is achieved by setting applymod 86 at the startup of
Com-plete. This can be useful to avoid test systems from having a detrimental effect on the system. Please
note that as soon as ACCESS is started, Com-plete is made non-swappable and will remain
non-swappable until the job is terminated. This is because Com-plete becomes a Cross Memory Server
and to do this, it must be non-swappable. Stopping and starting ACCESS will not affect this, because the
Cross Memory environment is never actually shut down when this is done.

Com-plete Savepool Areas

The lowest level of storage used under Com-plete is the Savepool element. These are elements used as
saveareas for nucleus modules. For this reason, these must be allocated correctly from the start, because if
they run out, depending on which part is affected by the failure, Com-plete is likely to go down
immediately or at least in the following time. This is because it is not possible to expand this Com-plete
resource as they are at such a basic level.

1

Com-plete Resource Usage and EstimatesCom-plete Resource Usage and Estimates

Savepool areas can be acquired by Com-plete routines with very little overhead. They are of a fixed length
and use the same techniques as the Fixed Buffer Pool Manager to get and free the buffers. They are
accountable in that usually, if an abend occurs to a task which has acquired a savepool area, the area can
be returned to the available pool and will not be lost.

They can be allocated above and below the line based on the SAVEPOOL and SAVEPOOL-ANY
sysparms. When it is possible, a savepool area from the pool which exists above the line will be used.
When no such savepool is allocated or the allocated pool is empty, the system will allocate a savepool
entry from the pool allocated below the line. When this is exhausted, unpredictable errors may occur
depending on what point in Com-plete’s processing the failure occurs. For this reason, great care must be
taken in allocating the savepool areas.

Due to the transient nature of SAVEPOOL usage, it is impossible to estimate the exact amount of
SAVEPOOL entries that will be required for a given installation. The safest recommendation that can be
given would be that 5 savepool areas be allocated above and below the line for each active Com-plete task
in the system (including system tasks).

It is possible to monitor the usage of the savepool areas using the UUTIL MO subfunction SP. These
should be monitored over the normal span of activity for the installation. For some, this will be every
week, for others it may be every month. Once a full set of figures is available, the worst possible figures
can be used as a guideline. Of course, an increase in the workload will again change this. It is therefore
always wise to leave a little room for movement and monitor the performance of the savepool areas on a
weekly basis.

Com-plete Fixed Buffer Pools

The current version of Com-plete uses a fixed length buffer pool mechanism to manage the most
commonly used Com-plete buffers. This opens up new scope for 24-hour operation, as well as improving
the availability of Com-plete, as fragmentation cannot exist as it can with variable type buffer pools.

This mechanism enables the allocation of buffer subpools below the 16M line, above the 16M line and in
ESA Data Spaces.

When a requested size does not exist in a subpool because the size is greater than the largest subpool
element size, the logic causes a new buffer subpool to be allocated with the required size to satisfy the
request. This facility can be deactivated on a buffer-by-buffer basis: no new buffer subpool is then created
and the request rejected.

For each buffer pool allocated, a chain of buffer subpools will exist for that specific buffer pool. Each
subpool represents one specific size / location combination. For example, a subpool can exist with size 1k
below the line and above the line, satisfying two logically different types of request. Error handling is as
described above with expansion of subpools, subject to storage availability provided for all buffer pools.

The COMSTOR Buffer Pool

When the Com-plete COMSTOR function is used, it generally means that many areas of the same size are
allocated in COMSTOR storage depending on the application usage profile. As such, it made sense to use
a fixed length buffer pool to handle these requests, as the buffer pool could then be tailored to meet the
demands of the various COMSTOR area sizes required.

2

Com-plete Fixed Buffer PoolsCom-plete Resource Usage and Estimates

This provides the following advantages:

COMSTOR no longer becomes fragmented, which previously called for an over allocation of
COMSTOR to ensure that requests were not eventually failed.

COMSTOR can take advantage of the expansion and contraction capability of the fixed buffer
pool manager. This means that even where too little storage has been allocated, the storage can still
be made available if there is enough space in the Com-plete region. Both of these factors ensure
that COMSTOR need never be a consideration and will never make it necessary to stop and restart
Com-plete.

Storage can be located based on the usage of the applications. Some old applications require that
the COMSTOR storage areas allocated for them be below the line due to ECBs being located
there. This can be handled by allocating a COMSTOR subpool below the line for these
applications. Newer applications can then take advantage of COMSTOR areas above the 16M line
and even in ESA data spaces where the COMSTOR area is not being used to contain ECBs.

The COMSTOR buffer pool is built using the COMSTOR-BUFFERPOOL sysparm. The size of the
element for each subpool defined determines the largest COMSTOR area size which can be provided from
that subpool. Of course, should a smaller size be requested and no smaller subpool is available to handle
that size, it too can be satisfied. The number of elements for the subpool determines how many
COMSTOR areas are to be initially allocated. Should you wish to limit it to that, you must simply specify
"0" for the number of elements by which it should expand if necessary. Otherwise, the subpool will be
expanded as necessary to cope with the demands placed upon it. However, no new bufferpool is created if
you request a larger COMSTOR area size than the biggest one defined in the sysparms

The location of the subpool storage will depend very much on the usage to which the allocated
COMSTOR areas will be put. Where an application program has an ECB within the COMSTOR area and
it runs in 24 bit mode, the area must be below the 16M line. When the application runs in 31 bit mode, the
COMSTOR area can reside above the 16M line. When the application program does not have an ECB in
its COMSTOR area, the subpool from where it will be gotten can be allocated in a data space on ESA
capable systems.

Note that for the COMSTOR buffer pool, an element size can only exist for one subpool regardless of the
variations in the location of the subpool. This is the case simply because the COMSTOR facility will
always allocate the COMSTOR area in the most widely available storage subpool. This means that a
subpool built in a data space will be used before one built above the line and so on. Therefore, if a second
subpool of the same element size were built in a different location, it would probably never be used.

Apart from the COMSTOR subpools which are built for application program usage, COMSTOR also
builds a subpool for the control of the COMSTOR facility in general. This is built based on the total
number of elements allocated based on the provided COMSTOR-BUFFERPOOL parameters. Where a
subpool with similar attributes to that required by COMSTOR is explicitly allocated by the user (i.e.,
LOC=ANY, ESIZE=72), this subpools element count will simply be increased by the number of entries
which COMSTOR expects to use.

Storage Key of Buffer Pool Subpools

A facility has been introduced to enable the allocation of fixed buffer pool manager subpools in a storage
protect key other than that used by Com-plete. Effectively this is another distinguishing factor for a
subpool, therefore, a number of subpools can now exist within the same buffer pool with the same element
size and location, however, each with a different storage protect key.

3

Com-plete Resource Usage and EstimatesStorage Key of Buffer Pool Subpools

The default for the majority of Com-plete’s fixed buffer pools is to allocate the subpool storage in
Com-plete’s key, however, the Adabas Interface requires storage which exists outside of the thread in the
thread’s key, in order to roll a user program out over an Adabas call. For this reason, the Adabas interface
builds a buffer pool with a number of storage subpools in different storage keys. Refer to the discussion
about the Adabas interface for more information. It is possible that other Com-plete subsystems may build
storage subpools with different storage protect keys in the future.

The Com-plete Unit of Work (CUOW)

The primary descriptor for work in the Com-plete system is the Com-plete Unit of Work control block or
CUOW. This control block is built in a buffer in the General buffer pool when a user program is started
and exists until the user program terminates. The CUOW contains all information related to the user
program.

Thread Groups and Sub-Groups

A user program can be catalogued to run in a specific thread group which must be defined at start up in
the sysparms. If a program is not allocated or it has no thread group associated with it, it will run in the
DEFAULT thread group if a thread sub-group exists within the group large enough to run the program.

For each thread group, one area is required for the Thread Group Control Block (TGCB) while one Thread
Subgroup Control Block (TSCB) is built for each sub-group. Each thread within the sub-group is
described by a Thread Control Block (THCB) as in previous releases of Com-plete.

It should be noted that the above control blocks (i.e. TGCB, TSCBs, and THCBs) are acquired from the
General buffer pool. Previously THCBs were linked with the Com-plete nucleus and followed the system
THCBs. The system THCBs remain where they always were but thread THCBs are no longer linked into
the nucleus nor will they be allocated beside each other. It should also be noted that these changes include
provision for the dynamic reconfiguration of the system which will give sites the ability to add or delete
threads and/or thread sub-groups. This means that in the future, THCBs may disappear during the lifetime
of a Com-plete run.

Task Groups

In some cases in the documentation, tasks and task groups will be referred to as processors or processor
groups. You will also notice that UUTIL MO functions and operator commands related to tasks start with
the letter ’P’. The reason that the task related control blocks are often referred to as processors in the
documentation is a simple one of naming conventions. When function names and operator commands
were being created, the T in ’thread’ and the T in ’task’ frequently caused the same name to be generated.
For this reason, any task related function or control block is prefixed with ’P’ which stands for processor.
Generally speaking, where the term ’processor’ is used, it can be substituted with ’task’.

Much like the thread groups, one or more task groups is allocated at Com-plete start-up. If a program has
a task group associated with it in it’s catalogue entry, the program will run in that task group if it exists. If
the program is not catalogued, or has no task group associated with it, it will run in the DEFAULT task
group.

For each task group, a Task Group Control Block (TGCB) which for each task within the task group, a
Task (Processor) Control Block (PRCB) is allocated. These control blocks are chained from the PRCB.
Both PRCBs and the PGCB are allocated from the general buffer pool.

4

The Com-plete Unit of Work (CUOW)Com-plete Resource Usage and Estimates

It is possible to add and delete tasks while the system is running through the TASKS operator command.
It should be noted that for performance reasons, when a PRCB has been allocated for a task and the task is
subsequently deleted, the PRCB is not actually freed. This can only occur when the task group itself is
deleted which occurs at EOJ. These so called dormant control blocks can subsequently be reused if more
tasks are added to a task group at some future point in the life of Com-plete.

Virtual Storage Usage

The following gives an overview of the major virtual storage areas in the Com-plete address space /
region. These are the areas to consider, e.g., when planning for the number of threads to allocate.
Experience shows, it is still hard to calculate the exact amount of storage that will be used. E.g., it may be
difficult to tell how many I/O buffers are allocated for each of the datasets when they are opened, you
don’t know in advance which bufferpools will expand, etc. Software AG recommends that you do a rough
estimate and start with a configuration that leaves 20-30% of your region below the 16M line free. Then,
while Com-plete is running and the maximum number of users is active, use USTOR function ASU to
determine the real address space utilization. If you then find that there is a good reserve, you can increase
the number of threads in one or more sub-groups.

Thread Storage

Typically, the biggest part of all storage in the Com-plete address space is used by the
threads. Each thread in a given sub-group occupies the same amount of storage below
the line, as specified by sysparm THREAD-GROUP. Each thread, independently of
thread group and sub-group, occupies the same amount of storage above the line if
specified by sysparm THSIZEABOVE.

Storage Occupied by Load Modules

Com-plete nucleus modules;

Com-plete server modules;

RESIDENTPAGE modules;

PGMLOOKASIDE modules.

The location of the modules is defined by their RMODE attribute, except for
PGMLOOKASIDE programs, which are always loaded above the line where possible.

Terminal Table (TIBTAB) Storage

The TIBTAB can be assembled and linked, from which the size of the TIBTAB can
easily be seen, or it can be dynamically generated for which the amount of storage used
must be calculated. The size of each TIB is currently 192 bytes. This version of
Com-plete allows the TIBTAB to reside above the 16M line, controlled by means of the
load module’s RMODE attribute or the sysparm TIBTAB=ANYnnnnn.

Savepool Storage

The size of one savepool element is currently 208 bytes.

5

Com-plete Resource Usage and EstimatesVirtual Storage Usage

Storage for Fixed Buffer Pools

The amount of storage used is the actual buffer storage itself, plus some storage for
control blocks. Once successfully initialized, Com-plete wherever possible obtains
storage already allocated from the buffer pools. Of course, if a buffer pool must be
expanded, this storage is again requested from the operating system.

I/O Buffers and Control Blocks

for Com-plete’s own datasets;

for VSAM and other datasets used by application programs.

Usually, control blocks and buffers for VSAM files are located above the 16M line,
those for all other files below the line.

Natural Buffer Pool Manager

The Natural buffer pool manager simply allocates storage as specified in the sysparms. A
message is issued indicating how much storage has been used and where it was obtained.
Unless forced below the line via a sysparm, the Natural buffer pool storage is obtained
above the line.

Control Blocks of the Operating System and Other Software products

TCBs, RBs, etc.;

RACF/ACF2 related control blocks, e.g. one ACEE per user;

etc.

General Buffer Pool Usage

After initialization, apart from the storage requirements that are specifically allocated at startup, all
Com-plete requests for storage are resolved from this buffer pool. This includes:

Short term working storage requests;

Medium term requests; this storage is held for the duration of a transaction;

Long term requests.

There are many different types of working storage areas obtained. Size, number, and location of these
areas heavily depend on various factors, making it almost impossible to calculate them exactly. Instead,
you are recommended to start with a general buffer pool configuration with a basic number of buffers of
64 bytes, 128 bytes, 256 bytes, 512 bytes, 1 Kbyte, 2 Kbytes, 4 Kbytes, and 6 Kbytes, below and above
the line, where applicable, for all of these sizes. For the basic numbers of buffers, reasonable values to
start with can be either your values from the previous version of Com-plete (if you are upgrading to a
higher version), or you can start with a configuration shown in the following example:

BUFFERPOOL=(64,100,100,ANY) (*)
BUFFERPOOL=(64,100,100)
BUFFERPOOL=(128,100,100,ANY)
BUFFERPOOL=(128,100,100)
BUFFERPOOL=(256,100,100,ANY)

6

General Buffer Pool UsageCom-plete Resource Usage and Estimates

BUFFERPOOL=(256,100,100)
BUFFERPOOL=(512,100,100,ANY)
BUFFERPOOL=(512,100,100)
BUFFERPOOL=(1K,100,100,ANY) (*)
BUFFERPOOL=(1K,100,100) (*)
BUFFERPOOL=(2K,10,10,ANY)
BUFFERPOOL=(2K,10,10)
BUFFERPOOL=(4K,10,10,ANY)
BUFFERPOOL=(4K,10,10)
BUFFERPOOL=(6K,10,10,ANY)
BUFFERPOOL=(6K,10,10)

Since they are related to other sysparms, the allocation parameters for the buffer pools marked with (*)
may be changed internally during startup.

If you then monitor the buffer pool statistics, you can easily determine the buffers that should be increased
or decreased in size or number.

The Roll Subsystem
While this version of COMPLETE removes the limit of a maximum of 16 threads, the number of threads
is still limited by the amount of storage available in the address space. In general, the number of users will
exceed the number of threads, so threads have to be shared between users.

When a user program has reached a certain point in its processing, for example a conversational terminal
write, it no longer needs to reside in the thread, as the conversational write will take a relatively long
period of time to complete. In this case, another user can use the thread. However, the current user’s data
must be saved somewhere. This section gives a definition of the terms used to describe the Com-plete
method of doing this.

Com-plete Rollout/Rollin Processing

Currently Com-plete can save the image in a thread buffer called the "roll buffer". This saving of data is
known as a "rollout".

When the user responds to the conversational write, the program copy must be found and moved back to
the thread to continue execution. Again the image is copied from the roll buffer back into the thread. This
process is referred to as a "rollin".

Com-plete Roll Buffers

In many installations, the sizes of the thread images which are rolled out from thread tend to be very
consistent in a production environment. This means that with the provision of a few subpools of the
required sizes, a roll buffer pool can be provided which will satisfy the vast majority of rolouts from
thread. When a roll buffer pool can be used in this way, there are a number of advantages.

The allocation and freeing of the buffer is infinitely quicker than for the variable buffer pool which
can have a major performance impact where a lot of rolling is taking place.

No fragmentation takes place, thus providing 24*7 functionality.

7

Com-plete Resource Usage and EstimatesThe Roll Subsystem

The subpools can reside in a data space, thus freeing up more of the Com-plete region for other
storage.

The fixed roll buffer pool is allocated based on the ROLL-BUFFERPOOL sysparm. The element size is
the amount of storage available in a given subpool into which the roll subsystem can copy a thread image.
This can best be determined by the second roll activities screen (PF11) in UCTRL which provides a map
of the sizes of the thread images which are being rolled out. If the load is consistent over a run of
Com-plete, this could be used to estimate the most appropriate subpool sizes which should be used for the
fixed Roll buffer pool.

The number of elements for a subpool indicate how many thread images the subpool can accept and again,
once the number to expand by is not set to 0, it will expand to handle the load. If the subpool is allocated
in a data space, this should not pose a major problem. However, if the subpool is allocated in the primary
region, due to the element sizes involved, the Com-plete region may fill very quickly.

As the location of these subpools is of no concern to users of the system, they should be allocated in the
most available area which is the default. This means that on ESA capable systems, they will be allocated
in a data space while on non-ESA capable but XA capable systems, they will be allocated above the 16M
line.

Gets and Frees from this buffer pool are extremely efficient using 370 instructions to serialize access to
the storage. By definition, it will never be fragmented so that it will still have the same potential to be used
after two weeks of operation, as it would have had after being brought up. Lastly, the storage where the
image is held can be allocated in a data space on ESA capable machines freeing up a large part of the
primary address space for other work.

The Maximum Number of Rolled Out Images.

The maximum number of rolled out images can simply be calculated as follows.

Maximum Logged on Users * (Maximum No. of Stack Levels +1) +

This is a theoretical maximum: some users will not use or will be disallowed from using the maximum
number of Stack Levels.

The Com-plete Spool Data Set
The Com-plete spool data set is a VSAM data set and contains the data for all print out spools in the
system and all messages that exist on disk.

Data Set Structure

The MAXPO sysparm indicates the maximum number of printouts and/or messages that can exist in the
system. Com-plete reserves this number of blocks at the start of the message data set to hold the control
information for a printout. The printout data set must contain at least this number of blocks or Com-plete
initialization will fail. If more blocks are available than the MAXPO specification, these blocks will be
used for printouts whose data cannot fit in the first record along with the control data.

8

The Com-plete Spool Data SetCom-plete Resource Usage and Estimates

Printout Structure

During initialization, Com-plete interrogates the directory information (contained in the first n blocks of
the spool data set) and constructs an in-store Message Core Queue (MCQ) for each printout requeued.
This MCQ information is supplemented by the information contained in the control record on disk. The
control record can point to more than one data block, Com-plete also maintains a list of index blocks
which are used for free space management within the spool data set, and possible positioning of the
printout via USPOOL commands.

Receiver list

When a printout or message is sent, it is sent to a receiver or a list of receivers. The
processing is different depending on whether a list of recievers or a single receiver is
specified. When a single receiver is specified, the receiver is remembered by name and
therefore the printout or message can be restarted in an environment with a dynamic
TIBTAB defined. In the same environment, using lists may result in restart problems, as
the list will be remembered using TIB numbers causing unpredictable results with the
restart. When the TIBTAB is defined, the restart can normally proceed without
problems, as unless the TIBTAB has changed, the various TIB numbers will still relate
to the original terminal.

Spool Data Set "Data"

The data written to the spool data set is compressed using repeat to address (RTA) type
commands, thus saving space. Lines are written into the data areas until the data area is
exhausted, then a new data block is allocated and the next line is started in there. To
avoid large searches when positioning printouts, index blocks are built. There will be
one index block describing multiple data blocks. The index maintains the page and line
number that each data block begins with, along with the data block number. Therefore
for large printouts, no time is wasted reading from the start of the data blocks to the end
of the data in searching for a specific line number.

Spool Data Set Space Calculations

You must first estimate the maximum number of printouts and messages that you expect
to see in a system. Once this is done, estimate the average size of the printouts. For small
printouts, the space available in the control record sometimes is sufficient so that no
extra data blocks area available. However, for installations who have large "receive" lists
and/or large printouts, additional index and data blocks must be allowed for over and
above the blocks allocated for the message data MAXPO index blocks.

The Com-plete Sequential/Direct Data Set
The Com-plete sequential/direct (SD) dataset contains application SD files, terminal paging files, and
Com-plete online dumps.

Data Set Structure

The space of this data set is split into two sections when it is initialized - one for
application SD and paging files and the other one for Com-plete online dumps. The first
record of the data set containes central information about the data set and its two
sections.

9

Com-plete Resource Usage and EstimatesThe Com-plete Sequential/Direct Data Set

Structure Of SD File Space

The SD file directory starts from the second record. The number of records used for this
directory depends on the maximum number of SD files as indicated at initialization time
and can be changed only by reinitialization of the data set. Each directory entry is 64
bytes long. Each directory record contains an integer number of entries. When an SD
files is added, the entire directory is expanded and an entry is inserted at the appropriate
place in ascending order by SD file name and TID number. For paging files, no directory
entries exist; all information about paging files is held in-storage only.

The SD file directory records are followed by the space where SD and paging files are
built. These records are used as a pool of unique-length blocks. 12 bytes of every block
are required for internal use, so the resulting blocksize is VSAM RECORDSIZE - 12.

Every SD file consists of index blocks and data blocks. Blocks for both index and data
are allocated dynamically from the pool when new records are written. When an SD file
is deleted, all blocks assigned to it are freed and returned to the pool. A paging file is
automatically deleted when the creating application program terminates; its blocks are
returned to the pool.

The index of an SD file is partitioned into blocks on fullword boundaries. The structure
of data blocks can be described as follows:

For Com-plete internal use, 1 byte is added to each SD file record. Depending on their
length, records are blocked or split to the blocksize mentioned above.
In case of blocking, an integer number of records is written to each block. The last bytes
of each block remain unused, if the blocksize is not an integer multiple of recordsize+1.
If recordsize+1 > blocksize, records are split. In this case, each record starts on a block
boundary. Thus, the last block of each record may remain partially unused.

Dump Space Size And Structure

The second part of the SD dataset is used for Com-plete online dumps. The first
record(s) of it contain(s) a dump directory of 32 entries. When 32 dumps exist and
another one has to be written, the oldest existing dump will be deleted and its directory
entry and space will be reused.

The dump directory is followed by the dump space. Its size is defined when the SD
dataset is initialized using TUSDUTIL. When deciding on the size of this space, you
must consider the size of the largest thread as specified in the THREADS= startup
option. It is recommended to assign space for 32 dumps of this size. If insufficient space
is available to add another online dump, Com-plete will delete the oldest existing
dump(s) and reuse this space to write the new one. This results in fewer than 32 dumps
being held online.

The UDEBUG Buffer Pool
This buffer pool contains two subpools which in turn can contain three UDEBUG control block types.

The first is the Com-plete Control Block (DBCCB) which is a control block required by a
UDEBUG session which must always be available, that is, not rolled out with the UDEBUG
session. It contains elements with a length of 56 bytes from which the Com-plete Control Block

10

The UDEBUG Buffer PoolCom-plete Resource Usage and Estimates

areas and the Global Symbol entries are allocated. The allocation and usage of this pool can be
managed using the FB function of UCTRL and the virtual storage required for can be determined using
estimates for fixed length buffer pools described in the section Storage for Fixed Buffer Pools.

The second control block is for UDEBUG breakpoints (DBBP). It contains elements with a length
of 184 bytes from which the UDEBUG breakpoint areas are allocated. The allocation and usage of this
pool can be managed using the FB function of UCTRL and the virtual storage required for can be
determined using estimates for fixed length buffer pools described in the section Storage for
Fixed Buffer Pools.

The third is for UDEBUG global symbol entries which must be available to all users.

When a user starts a UDEBUG session, a DBCCB is allocated and when the session terminates, either
normally or abnormally, the DBCCB is freed. This means that the number of DBCCBs allocated will be in
direct proportion to the number of UDEBUG sessions.

Breakpoint buffers are gotten but never actually freed back to the buffer pool, they are logically freed by
UDEBUG to make them available for other breakpoint requests. This was necessary to reduce the cost of
serialization. It also means that once the breakpoint subpool has expanded, it will never be contracted. The
following discussion therefore relates to the logical getting and freeing of breakpoint buffers.

Breakpoint buffers are obtained implicitly and explicitly. An explicit "get" occurs when the user sets a
breakpoint successfully. The freeing of this buffer is a little more complex. Generally speaking, the
breakpoint is deleted explicitly by the user or when the UDEBUG session terminates. However, this does
not mean that the buffer can be freed. The buffer can only be freed when it can be determined that firstly,
the breakpoint is inactive, and secondly, that the breakpoint is not activated while it is being deleted. This
generally applies to a situation where the TIB being debugged is different to the TIB on which UDEBUG
is running. To avoid costly serialization, these DBBP buffers can only be freed by the debugged terminal.

Even then, it is unlikely that the buffer can be freed. For example, if the breakpoint is for a program which
resides in the thread, this cannot be deleted until this user is active in thread again. In the case, the buffer
can therefore only be freed once this user has become active and the breakpoint actually reset.

The Roll Buffer

To enable the UDEBUG session to access storage from the user program which is being debugged, the
debugged user will be forced to roll out over a BP, as opposed to the normal situation, in which the user is
only rolled out when someone else needs the thread. Also, the user must be rolled out to the roll buffer,
otherwise the storage will not be accessible by the UDEBUG session. Lastly, no compression of the free
queue elements in a thread will be done to ensure that the thread layout is identifiable to the user. This
means that the full catalog size of the program being debugged will always be rolled out.

Once the user is successfully rolled out to buffer, the system will ensure that this image is never staged out
to ensure that it remains available to the debugging user. This means that the rollbuffer size must be
chosen carefully to ensure firstly, that the thread of the program being debugged can always be rolled into
the buffer, and that the impact of doing this does not impact the general performance of the Com-plete
system.

11

Com-plete Resource Usage and EstimatesThe Roll Buffer

CPU Usage

As UDEBUG is a debugging tool, the main purpose is to provide functionality with CPU usage a
secondary consideration, as this functionality will only be used when testing programs. For this reason, the
usage of UDEBUG in a system, particularly through the setting of breakpoints, can significantly affect the
CPU usage within Com-plete, even for users who are not debugging or being debugged. Therefore the use
of UDEBUG in a production environment must be strictly controlled.

This chapter gives an overview of how Com-plete uses the various system resources and shows how you
can estimate the amount used, based on Com-plete’s needs and other factors at your installation.
Depending on the type of resource, a shortage of that resource will under normal circumstances be
handled by Com-plete. In some cases, resource shortage does not affect the operation of Com-plete;
however, in others, it can mean that certain functions cannot be performed until sufficient storage
becomes available. This is discussed in more detail at the start of each section.

Note:
The storage estimates given in this section refer to the base level of Com-plete 6.1. Future maintenance
may cause these estimates to change. Please refer to the relevant documentation updates issued with each
maintenance level.

12

CPU UsageCom-plete Resource Usage and Estimates

	Com-plete Resource Usage and Estimates
	Virtual and Real Storage
	Real Storage
	Com-plete Savepool Areas
	Com-plete Fixed Buffer Pools
	The COMSTOR Buffer Pool

	Storage Key of Buffer Pool Subpools
	The Com-plete Unit of Work †CUOW‡
	Thread Groups and Sub-Groups
	Task Groups
	Virtual Storage Usage
	General Buffer Pool Usage

	The Roll Subsystem
	Com-plete Rollout/Rollin Processing
	Com-plete Roll Buffers
	The Maximum Number of Rolled Out Images.

	The Com-plete Spool Data Set
	Data Set Structure
	Printout Structure

	The Com-plete Sequential/Direct Data Set
	The UDEBUG Buffer Pool
	The Roll Buffer
	CPU Usage

